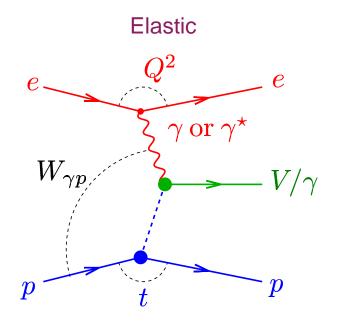
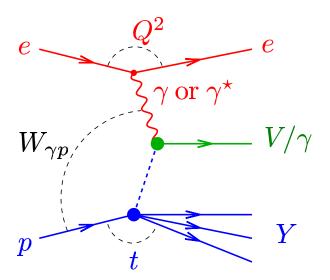


The University of Manchester

H1 measurements of deeply virtual Compton scattering and studies of vector meson production

Carl Gwilliam


Manchester University

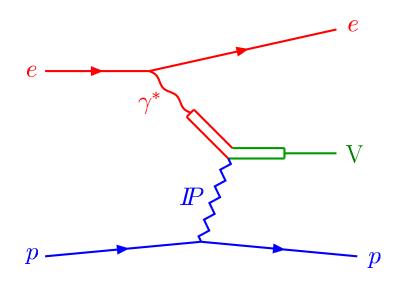

On behalf of the H1 Collaboration

Workshop on Low x Physics

Sinaia, Romania ● 29th June - 2nd July 2005

Dissociative

Proton dissociation dominates at large |t|


 $\begin{array}{lll} Q^2 & \text{Virtuality of the } \gamma^{\star} & \sim 0 < Q^2 < 100 \text{ GeV}^2 \\ W_{\gamma p} & \text{CM energy of the } \gamma p \text{ system} & 20 < W_{\gamma p} < 305 \text{ GeV} \\ t & \text{(4 momentum transfer at the p vertex)}^2 & \sim 0 < |t| < 30 \text{ GeV}^2 \\ V & \text{Vector meson} & \rho^0, \omega, \phi, J/\psi, \psi(2s), \Upsilon(1s) \end{array}$

⇒ Simultaneous probe of several different kinematical quantities

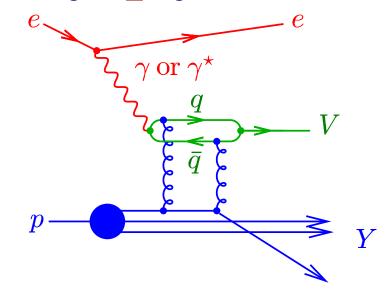
Theoretical Models of Exclusive Vector Meson Production

Regge Theory:

Soft pomeron exchange

ullet Slow rise of cross section with W

$$\sigma \propto \left(\frac{W}{W_0}\right)^{4\alpha_{I\!\!P}(t)-1} \approx W^{0.22}$$


• Shrinkage $\Rightarrow t$ slope varies with W

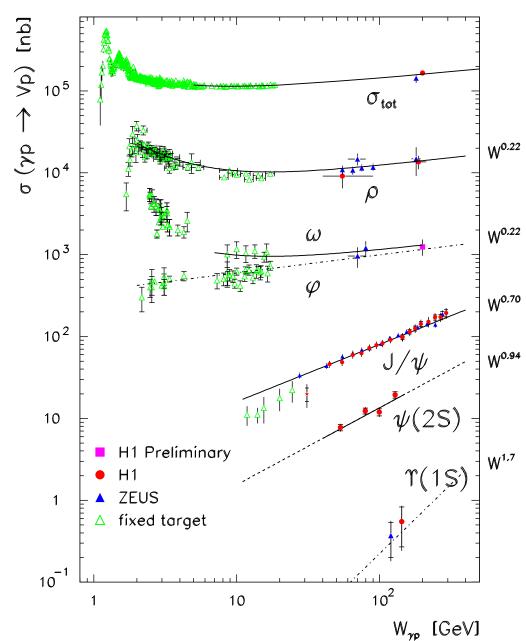
$$\frac{d\sigma}{dt} \propto e^{-bt}$$
: $b = b_0 + 4\alpha'(IP) \ln\left(\frac{W}{W_0}\right)$

ullet Works for light VMs at $Q^2 pprox 0$ and t pprox 0

pQCD Models:

• Exchange of ≥ 2 gluons

ullet Steeper rise in cross section due to g


$$\sigma \propto [xg\left(x,Q^2\right)]^2$$
 naively

• Power law dependence at large |t|

$$\frac{d\sigma}{dt} \propto |t|^{-n}$$

• Calculations require hard scale: M_V^2, Q^2, t

Elastic Vector Mesons in Photoproduction

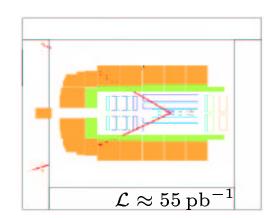
ullet Total photoproduction cross section for elastic VM production (small |t| & Q^2)

Light Vector Mesons (ρ, ω, ϕ) :

- ullet Observed dependence is $\sigma \sim W^{0.22}$
 - \Rightarrow Consistent with soft $I\!\!P$ expectation

Heavier Vector Mesons $(J/\psi, \psi(2s))$:

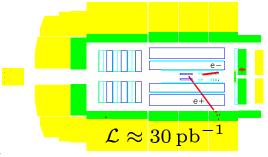
- Steeper rise in cross section observed
 - \Rightarrow Need something in addition to soft $I\!\!P$
- See break down of pomeron universality
 - ⇒ VMs at HERA provide a test of the transition between soft & hard regimes


Elastic J/Ψ

 $J/\psi \to \mu^+ \mu^-/e^+e^-$ in 99/00 data with $t < 1.2~{\rm GeV^2}$ & $Q^2 < 1~(80)~{\rm GeV^2}$ for $\gamma p~(ep)$

Selected by 2 oppositely charged leptons (+scat. e) in 3 topologies:-

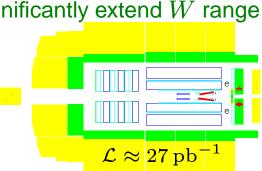
Track-Track (TT): Two tracks with at least one muon in $ep/\gamma p$


- Two tracks with $P_t > 0.8 \, \mathrm{GeV}$ within CJC/CMD $(20 < \theta < 160^\circ)$
- $ep \Rightarrow$ scattered e with $E > 12 \, \mathrm{GeV}$ in SpaCal $(160 < \theta < 177^{\circ})$ $\Rightarrow 40 < W < 160 \,\mathrm{GeV}^2$

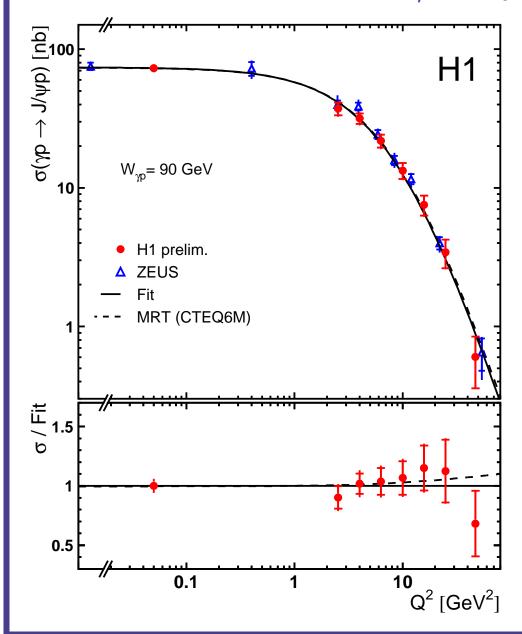
Track-Cluster (TC): One track & one cluster electron in γp

- Track with $P(P_t) > 0.8 (0.7) \text{ GeV}$ within CJC $(80 < \theta < 155^{\circ})$
- Cluster with $E > 4.2 \, \mathrm{GeV}$ detected in SpaCal $(160 < \theta < 177^{\circ})$

$$\Rightarrow 135 < W < 235 \,\mathrm{GeV}^2$$



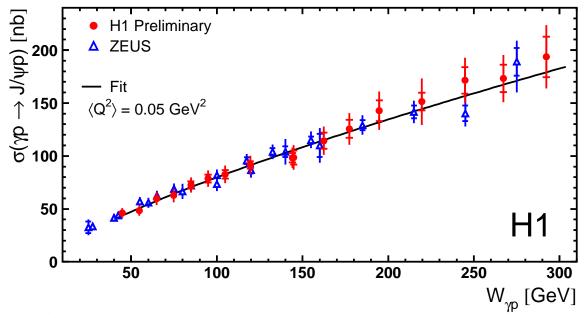
Significantly extend W range

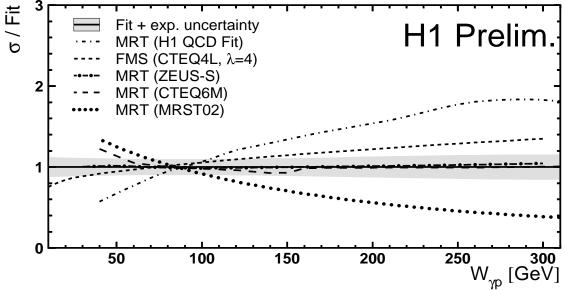

Cluster-Cluster (CC): Two cluster electrons in γp

ullet Two clusters with $E>4.2~{
m GeV}$ & $E>6.0~{
m GeV}$ found in SpaCal with $160 < \theta_1 < 174^{\circ} \& 160 < \theta_2 < 175.5^{\circ}$ (1 validated by BST)

$$\Rightarrow 205 < W < 305 \,\text{GeV}^2$$

Elastic J/Ψ : Q^2 Dependence

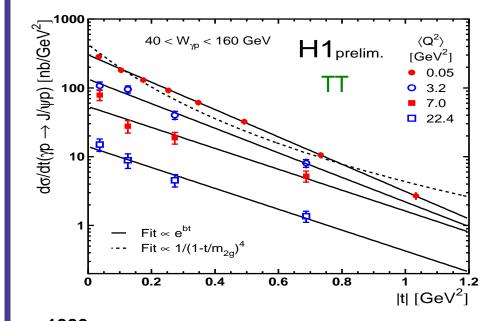


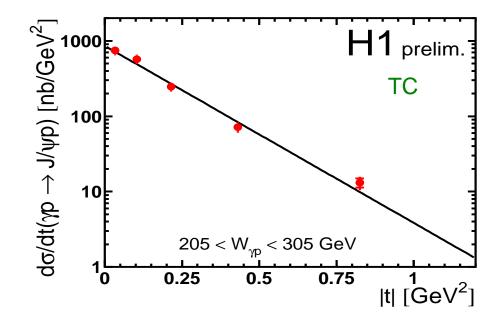

- Well fitted by form $\sigma \propto \left(Q^2 + M_V^2\right)^{-n}$ $\Rightarrow n = 2.486 \pm 0.080 \pm 0.068$
- Slight down-shift of data compared to old
 H1 results but consistent within errors

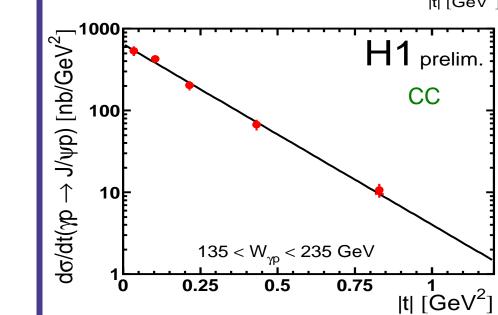
MRT pQCD Model:

- ullet K_T factorisation + parton-hadron duality \Rightarrow open $car{c}$ production with projection of $J^P=1^-$ state in appropriate mass interval
- ullet Includes effect of skewed gluon distribution \Rightarrow enhances cross section mainly at high Q^2
- Provides a good description of the data
 when normalised to photoproduction point

Elastic J/Ψ : W Dependence

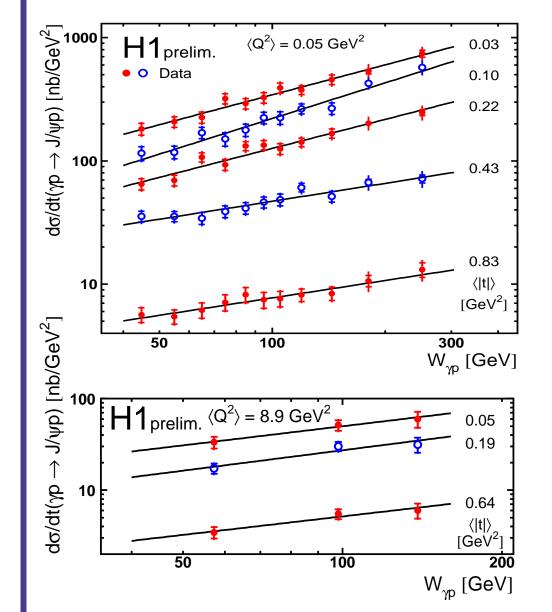

- Excellent agreement with both the
 ZEUS and previous H1 results
- Fit with power law $\sigma \propto W^{\delta}$:


 Photoproduction $(\langle Q^2 \rangle = 0.05 \, {\rm GeV}^2)$ $\Rightarrow \delta = 0.740 \pm 0.034 \pm 0.034$


Electroproduction (
$$\langle Q^2 \rangle = 3.2 \, \mathrm{GeV^2}$$
)
 $\Rightarrow \delta = 0.67 \pm 0.20 \pm 0.14$

- ullet No observed dependence of power δ on Q^2 within errors (J/ψ) mass already provides hard scale)
- ullet Data may be able to constrain gluon PDFs at low x (least well described)

Elastic J/Ψ : t Dependence


Data well described by simple exponential

$$\frac{d\sigma}{dt} \propto e^{-bt}$$
 $\Rightarrow \chi^2 = 0.25$

- No significant variation of slope b with Q^2
- Dipole formalism (FMS) clearly disfavoured

$$\frac{d\sigma}{dt} \propto \frac{1}{\left(1 - t/m_{2g}\right)^4} \qquad \Rightarrow \chi^2 = 5.5$$

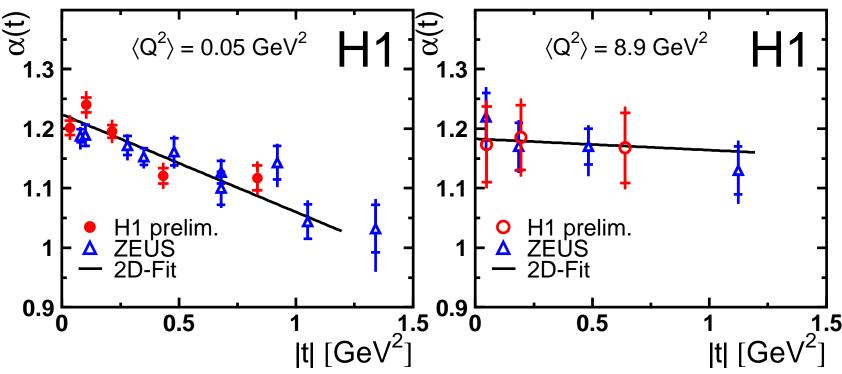
Elastic J/Ψ : W - t Dependence

Data well described by 1 dimensional fit

$$\frac{d\sigma}{dt}(W,\langle t\rangle) \propto W^{4\alpha(\langle t\rangle)-1}$$

A two dimensional fit of the form

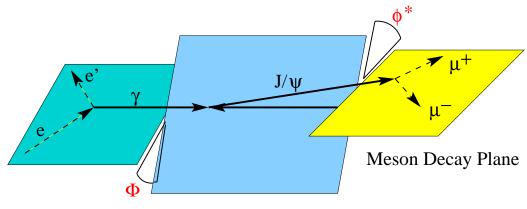
$$\frac{d\sigma}{dt}(W,t) \propto e^{-b_0 t} W^{4\alpha(t)-1}$$


allows access to effective IP trajectory

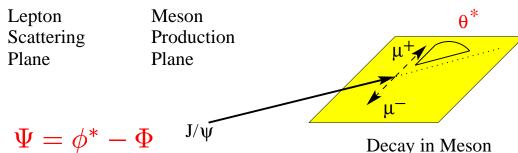
$$\alpha(t) = \alpha_0 + \alpha' t$$

• Fit extracts α_0 , α' , b_0 (and normalisation parameters for the 3 separate samples) ...

Elastic J/Ψ : Effective Pomeron Trajectory


 $\bullet \alpha_0 = 1.224 \pm 0.010 \pm 0.012$

- $\alpha_0 = 1.183 \pm 0.054 \pm 0.030$
- $\alpha' = 0.164 \pm 0.028 \pm 0.030 \,\mathrm{GeV}^{-2}$
- $\alpha' = 0.019 \pm 0.139 \pm 0.076 \,\mathrm{GeV}^{-2}$


⇒ Trajectories are compatible within uncertainties

- Intercept larger $(\alpha_{IP}(0) \approx 1.08)$ and slope shallower $(\alpha' \approx 0.25 \, {\rm GeV}^{-2})$ than Regge prediction
- Shrinkage (b(W)) is observed in photoproduction (but is inconclusive for electroproduction)

Spin Density Matrix Elements (SDMEs)

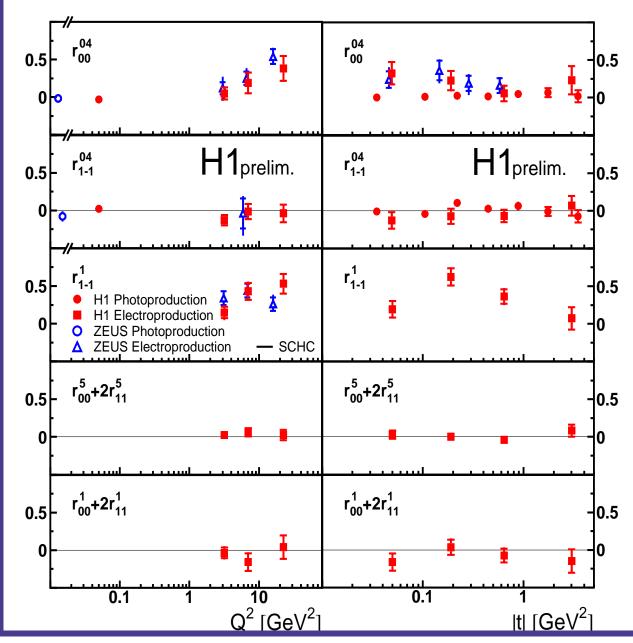
- Production & decay angular distributions
- ⇒ 15 spin density matrix elements
 but only 3 accessible in photoproduction

SDMEs depend on helicity amplitudes

$$\Rightarrow r_{kl}^{ij} \propto T_{\lambda_{VM}\lambda_{\gamma}} T_{\lambda'_{VM}\lambda'_{\gamma}}$$

No helicity flip: T_{00} / T_{11}

Single flip: T_{01} / T_{10}

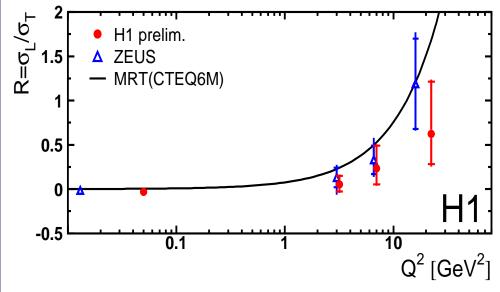

Double flip: T_{1-1}

$$\frac{d\sigma}{d\cos\theta^*} \propto 1 + r_{00}^{04} + \left(1 - r_{00}^{04}\right)\cos^2\theta^*
\frac{d\sigma}{d\phi^*} \propto 1 + r_{1-1}^{04}\cos2\phi^*
\frac{d\sigma}{d\Psi} \propto 1 - \epsilon r_{1-1}^1\cos2\Psi
\frac{d\sigma}{d\Phi} \propto 1 - \epsilon \left(r_{00}^1 + 2r_{11}^1\right)\cos2\Phi +
\sqrt{2\epsilon\left(1 + \epsilon\right)}\left(r_{00}^5 + 2r_{11}^5\right)\cos\Phi$$

- s-channel helicity conservation (SCHC)
 - ⇒ Vector meson retains photon helicity

Rest Frame

Elastic J/Ψ : Spin Density Matrix Elements

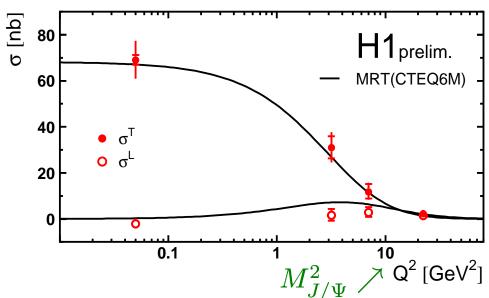

- $r_{00}^{04} > 0$ for electroproduction \Rightarrow photon develops longitudinal component with increasing Q^2
- SCHC + Natural Parity Exchange

$$\Rightarrow r_{1-1}^1 = \frac{1 - r_{00}^{04}}{2} \approx 0.5$$

which seems to approx. hold

- ullet Both combinations of elements $r_{00}^5+2r_{11}^5$ and $r_{00}^1+2r_{11}^1$ are consistent with zero \Rightarrow SCHC
- Deviation from zero seen for $r_{00}^5+2r_{11}^5$ and $r_{00}^1+2r_{11}^1$ in ρ electroproduction analysis

Elastic J/Ψ : Longitudinal and Transverse Cross Sections


Longitudinal to transverse cross section ratio:

$$R = \frac{\sigma_L}{\sigma_T} = \frac{r_{00}^{04}}{\epsilon (1 - r_{00}^{04})}$$

where ϵ is given by:

$$\epsilon = \frac{1-y}{1-y+y^2/2}$$

and is is very close to 1 over full range

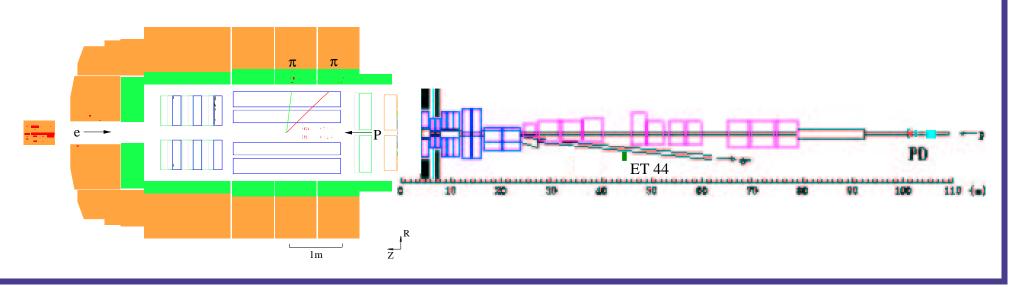
• Total cross section is given by:

$$\sigma = \sigma_T + \epsilon \sigma_L$$

 \Rightarrow Can extract σ_L and σ_T simultaneously

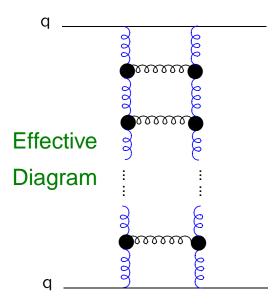
 MRT model provides reasonable description of data

ho at High |t|


$$\gamma + p
ightarrow
ho^0 + Y$$
 with $ho^0
ightarrow \pi^+\pi^-$ in tagged photoproduction

Selection:

- 2000 data period $\Rightarrow \mathcal{L} = 20.1 \; \mathrm{pb}^{-1}$
- Two tracks within CJC $(20 < \theta < 155^{\circ})$
- No additional neutral clusters in LAr
- Electron with $E>15~{\rm GeV}$ in 44 m tagger


Kinematics:

- ullet Photoproduction $Q^2 < 0.01~{
 m GeV^2}$
- ullet Tagged electron $75 < W < 95~{
 m GeV}$
- |t| range $1.5 < |t| < 10.0 \, {\rm GeV^2}$
- ullet Proton remnant mass $M_{Y} < 5~{
 m GeV}$

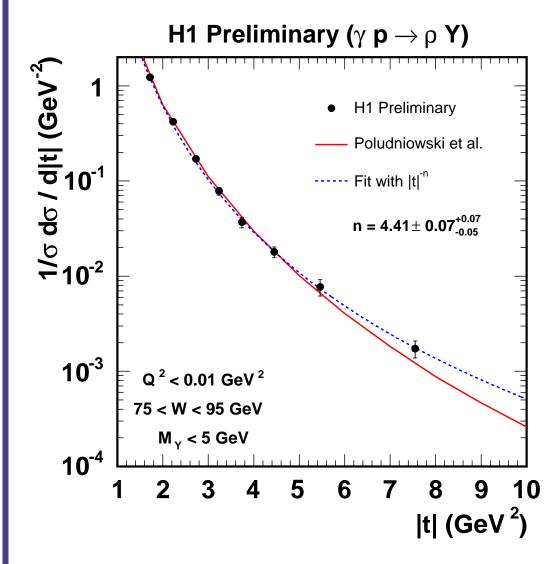
BFKL LL:

• Sums terms in $\alpha_s^n \log^n(1/x) \Rightarrow$ Effective gluon ladder ("pomeron")

ullet "Random walk" with **no** transverse momentum k_T ordering but strong longitudinal momentum ordering \Rightarrow x increases up ladder

BFKL Model

Poludinowski et al.†:


- Challenge is to provide a simultaneous description of both the |t| spectra and the SDMEs
- LL BFKL with meson production factorised from hard sub-process using a set of light-cone vector meson wavefunctions [up to twist-3]
- Free parameters:

 $lpha_s^{IF}$: coupling of the two gluons to each impact factor $lpha_s^{BFKL}$: the gluon couplings inside the gluon ladder $\Lambda^2=m_v^2-\gamma t$: undefined energy scale

ullet Naively expect light quark mesons to be predominantly longitudinal \Rightarrow use constituent q mass $m=m_V/2$ to introduce large chiral odd contribution and so enhance production of transverse mesons

^{† [1]} R. Enberg *et al.*, JHEP **0309** (2003) 008 [hep-ph/0306232] [2] G. G. Poludniowski *et al.*, JHEP **0312** (2003) 002 [hep-ph/0311017]

High |t| ho: Dependence on $|m{t}|$

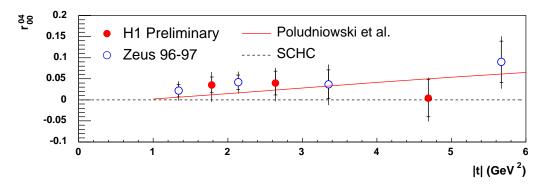
 $n_{ZEUS} = 3.21 \pm 0.04 \text{ (stat.)} \pm 0.15 \text{ (syst.)}$

Fit:

ullet Power-like behaviour is expected at large $|t| \Rightarrow$ Data fitted with $|t|^{-n}$

$$n = 4.41 \pm 0.06 \text{ (stat.)}_{-0.05}^{+0.07} \text{(syst.)}$$

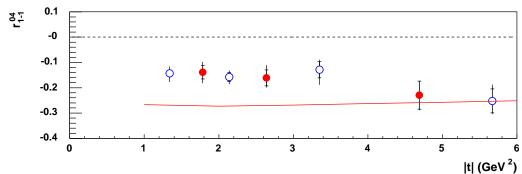
BFKL Model:


BFKL model well describes data using

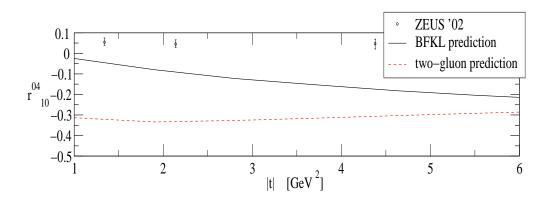
$$\alpha_s^{IF}=0.17$$

$$\alpha_s^{BFKL}=0.25$$

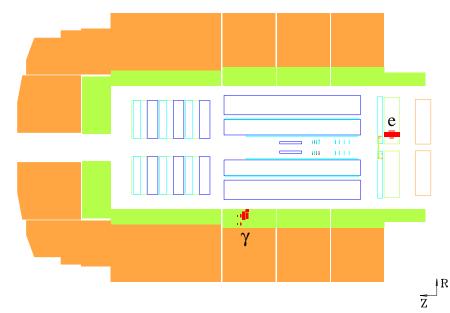
$$\gamma=1$$
 at $\langle W \rangle=87~{\rm GeV}$ and $Q^2=0~{\rm GeV}^2$


ullet t slope quite sensitive to the M_Y cut. Here evaluated for $M_Y < 5~{
m GeV} \Rightarrow$ theory predicts steeper dependence than for ZEUS, where $M_Y < 25~{
m GeV}$

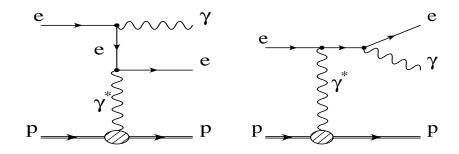
High |t| ho: Dependence of SDMEs on $|m{t}|$


H1 Preliminary ($\gamma p \rightarrow \rho Y$)

- Helicity single flip amplitude consistent with zero ⇒ production dominated by transversely polarised ρ mesons
- ullet Small r_{00}^{04} well described by model


- Non-zero helicity double flip amplitude \Rightarrow confirmation of s-channel helicity non-conservation in ρ mesons
- ullet Large r_{1-1}^{04} qualitatively agrees with model but prediction too big at lower |t|

- ZEUS r_{10}^{04} data differs significantly from zero \Rightarrow production of longitudinal ρ meson (+) from transverse γ (0)
- ullet BFKL model unable to describe r_{10}^{04} as prediction is too large and negative


Deeply Virtual Compton Scattering (DVCS)

hep-ex/0505061

\bullet $e^+p \rightarrow e^+\gamma p$ with $\mathcal{L}=46.5~\mathrm{pb}^{-1}$ over 96-00

Reaction is an interference between strong
 DVCS and calculable e.m. Bethe-Heitler (BH):

Selection:

- Scattered electron with $E_e > 15 \, {\rm GeV}$ detected in SpaCal $(153 < \theta_e < 175^\circ)$
- \bullet Photon with $P_t^{\gamma}>1~(1.5)~{\rm GeV}$ for 99/00 (96/97) in LAr $(25<\theta_{\gamma}<145^{\circ})$

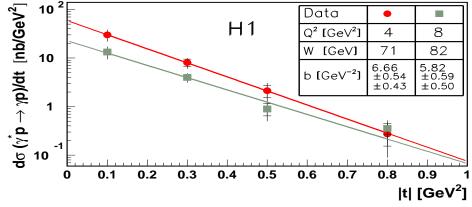
Kinematics:

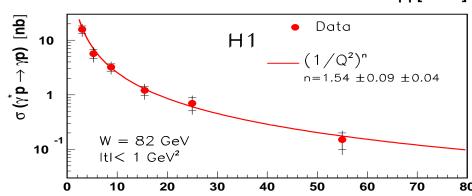
• $Q^2 < 80 \, {\rm GeV}^2$, $30 < W < 140 \, {\rm GeV}$ (to enhance DVCS/BH) & $|t| < 1 \, {\rm GeV}^2$ • DVCS cross section obtained by subtracting BH as interference cancels when integrate over azimuthal angle (between $e \& \gamma$ planes):

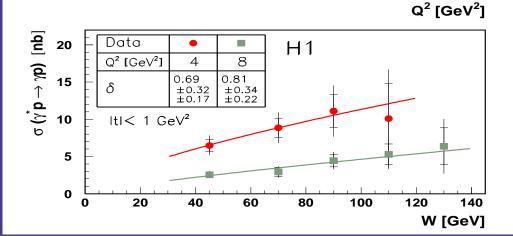
$$\frac{d^3\sigma[ep\to e\gamma p]}{dydQ^2dt}\left(Q^2,y,t\right) = \Gamma\frac{d\sigma[\gamma^*p\to \gamma p]}{dt}\left(Q^2,y,t\right)$$

where $\Gamma\left(Q^2,y\right)$ is the transverse photon flux:

$$\Gamma = \frac{\alpha \left(1 - y + y^2 / 2\right)}{\pi y Q^2}$$

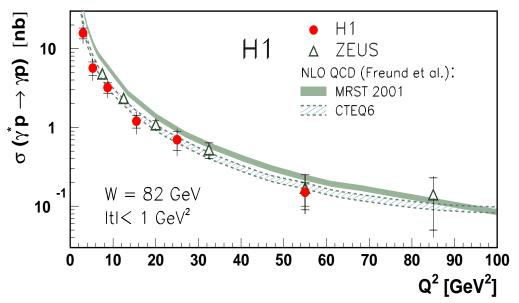

DVCS and Generalised Parton Distributions (GPDs)

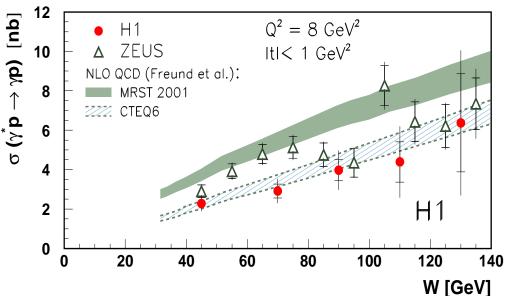

Factorisation ⇒ pQCD calculable hard process + non-pert. proton structure effects (GPDs)


LO: e y $x-\xi$ pInteraction p p

- Clean experimental signature + not hampered by wavefunction uncertainties as with VMs
- Skewdness ξ : measure of momentum difference between emitted & absorbed partons [caused by the necessary transition from a virtual photon to a real one]
- GPDs: correlations between partons in proton & transverse momentum (not in PDFs) $E^{q,g}\left(x,\xi,t\right)\Rightarrow$ has no analogue in ordinary PDF approach $H^{q,g}\left(x,\xi,t\right)\Rightarrow$ reduce to ordinary PDFs [q(x) & xg(x)] in limit $\xi \to 0 \& t \to 0$
- At low x main contribution is provided by $H^{q,g}\left(x,\xi,t\right)$, while $E^{q,g}\left(x,\xi,t\right)$ is small

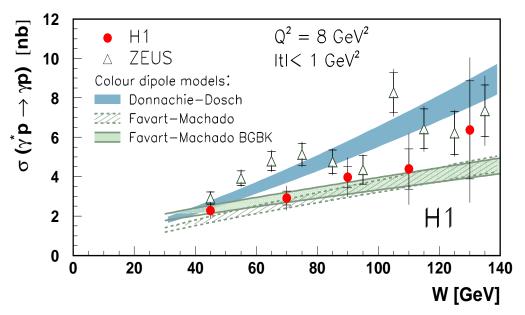
DVCS: t, Q^2 and W Dependencies

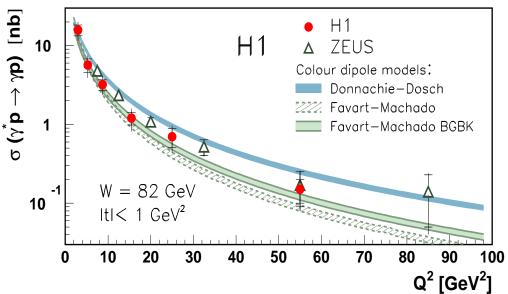




- First measurement of *t* dependence
- Fit with an exponential: $\frac{d\sigma}{dt} \propto e^{-bt}$
- No dependence of b on Q^2 within errors
- Average of two data sets at $Q^2 = 8 \text{ GeV}^2$ $\Rightarrow b = 6.02 \pm 0.35 \pm 0.39 \text{ GeV}^{-2}$
- Fit with a power law: $\sigma \propto \left(1/Q^2\right)^n$
- n consistent within different Q^2 ranges
- ullet Average 2 sets $\Rightarrow n = 1.54 \pm 0.09 \pm 0.04$
- Shallower than for VMs (no VM wavefunction)
- ullet Fit with a power law: $\sigma \propto W^{\delta}$
- ullet No dependence of δ on Q^2 within errors
- Average of two data sets at $Q^2 = 8 \, \mathrm{GeV}^2$ $\Rightarrow \delta = 0.77 \pm 0.23 \pm 0.19$
- ullet Very Close to $\delta_{J/\Psi}(\gamma p) \Rightarrow$ Hard Regime

DVCS: Comparison with ZEUS and NLO QCD




• Reasonable agreement with ZEUS data [corrected to H1 Q^2/W using ZEUS n/δ]

Freund & McDermott NLO QCD Model:

- 1st absolute prediction in diffraction!
- Normalisation uncertainty is reduced since b is extracted from data
- DGLAP Region ($|x|>\xi$) \Rightarrow Uses ordinary MRST2001/CTEQ6F PDFs
 QCD evolved from a starting scale of Q_0^2 $H^q\left(x,\xi,t;Q_0^2\right)=q\left(x;Q_0^2\right)e^{-bt}$
- Skewing generated purely dynamically
- ERBL Region ($|x| < \xi$) \Rightarrow Polynomial matched smoothly at $x = \xi$
- Good description of data if use CTEQ6F

DVCS: Comparison with Colour Dipole Models (CDMs)

- CDMs factorise DVCS amplitude into:
 - 1. Wavefunction for γ to fluctuate into $qar{q}$
 - 2. Cross section for $q\bar{q}$ interaction with p
 - 3. Wavefunction for outgoing photon
- Models differ in dipole σ parameterisation

Donnachie & Dosch \Rightarrow Soft and hard $I\!\!P$ exchange depending on dipole size

Favart & Machado ⇒ GBW saturation model with DGLAP evolution (BGBK)

 Good description of the data shape and normalisation + DGLAP evolution improves Favart & Machado description

Summary

Elastic J/Ψ :

- ullet Significantly extends W range up to $W=305~{
 m GeV}$
- Good description of Q^2 & W data by MRT (with CTEQ6M)
 - May be used to constrain gluon at low x
- No violation of SCHC observed

High $|t|\rho$:

- ullet Measurement of ho mesons up to $t=10~{
 m GeV^2}$
- Confirms violation of SCHC
- ullet BFKL model provides good description of t dependence and moderate description of r_{00}^{04} & r_{1-1}^{04} but cannot reproduce r_{10}^{04}

DVCS:

- Complete HERA I analysis performed
- 1st measurement of *t* dependence of cross section
- Good description of data by NLO QCD (& also CDMs)
 - Works even at lowest Q^2 ($\sim 2~{\rm GeV^2}$)
 - Skewing generated purely dynamically

HERA II analyses are still to come